If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+30x-87.5=0
a = 2; b = 30; c = -87.5;
Δ = b2-4ac
Δ = 302-4·2·(-87.5)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-40}{2*2}=\frac{-70}{4} =-17+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+40}{2*2}=\frac{10}{4} =2+1/2 $
| 5x+6-2x-9=30 | | y=3/4+9 | | 2x^2+30x+100+87.5=0 | | x-6+8=13 | | -8x+18=38 | | 3x+3=12x-3 | | 2(3x+5)=2x+16 | | 6s-4=44 | | 5+-3r=2 | | -20x+3+-15+9+-40+18=180 | | -10x-7=-17 | | 78-x=92 | | H=-16t^+189t+6 | | 37=18q+2 | | 1.66x=15 | | 2(x+12/5)=50/5 | | 2(x+19)=42 | | 5x+27/5=37/5 | | 6x+28=48 | | 6n+5=-7-21 | | 61.50+4g=75.50 | | 4g+61.50=75.50 | | x=1/2(30)+(2x-30) | | -9x-1=-64 | | 3x+6.58=22.39 | | 3(x-2)=2(x+2)-10 | | -4x-45-6x=-8(2x+3)-9x | | 48=b^2+25b^2 | | d/0.13=2.5 | | x4=55 | | -3b=2b-5b | | 8x(4x+6)+x=180 |